JSN			10MAT31
		Third Semester B.E. Degree Examination, Dec.2014/Jan	n.2015
		Engineering Mathematics – III	
Tin	ne: 3	3 hrs.	ax. Marks:100
		Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.	
		uncust 1110 questions from each part.	
		PART – A	
1	a.	Expand $f(x) = \sqrt{1 - \cos x}$, $0 < x < 2\pi$ in a Fourier series.	Hence evaluate
		$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$	(07 Marks)
			(07 Marks)
		Find the half-range sine series of $f(x) = e^x in (0, 1)$.	(06 Marks)
	c.	In a machine the displacement y of a given point is given for a certain angle x 0 30 60 90 120 150 180 210 240 270 300	
		y 7.9 8 7.2 5.6 3.6 1.7 0.5 0.2 0.9 2.5 4.7	6.8
		Find the constant term and the first two harmonics in Fourier series expansion	on of y.
			(07 Marks)
		Tr a const	
2	a.	Find Fourier transform of $e^{- x }$ and hence evaluate $\int_{0}^{\infty} \frac{\cos xt}{1+t^2} dt$.	(07 Marks)
		$x, 0 < x \le 1$	
	b.	Find Fourier sine transform of $f(x) = \begin{cases} 2-x, & 1 \le x < 2. \end{cases}$	(06 Marks)
		0, x > 2	•
	с.	Solve the integral equation $\int_{-\lambda}^{\infty} f(x) \cos \lambda x dx = e^{-\lambda}$.	(07 Marks)
	0.	$\int_{0}^{1} (x) \cos x dx = c$	(07 Marks)
		- JN	
3	a.	Find various possible solution of one-dimensional heat equation by semethod.	
	b.	A rectangular plate with insulated surface is 10cm wide and so long comp	(10 Marks) ared to its width
		that it may be considered infinite in length without introducing an appreci	
		temperature of the short edge $y = 0$ is given by	
		$u = 20x, 0 \le x \le 5$	
		$x = 20 (10 - x), 5 \le x \le 10$ and the two long edges $x = 0, x = 10$ as well as the other short edge are kept	t at 0°C Find the
		temperature $u(x, y)$.	(10 Marks)
ł	a.	Fit a curve of the form $y = ae^{bx}$ to the data:	(07 Marks)
		x 1 5 7 9 12 y 10 15 12 15 21	
	b.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	0.	Minimize $Z = 20x_1 + 30x_2$	
		Subject to $x_1 + 3x_2 \ge 5$;	•
		$2\mathbf{x}_1 + 2\mathbf{x}_2 \ge 20;$	
		$3x_1 + 2x_2 \ge 24;$	
		$x_1, x_2 \ge 0.$ 1 of 3	(06 Marks)
		1015	

10MAT31

c. Solve the following LPP by using simplex method: Maximize $Z = 3x_1 + 2x_2 + 5x_3$

Subject to $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$ $x_1 \ge 0, x_2 \ge 0.$

(07 Marks)

PART – B

- a. Use the Gauss-Seidal iterative method to solve the system of linear equations. 27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110. Carry out 3 iterations by taking the initial approximation to the solution as (2, 3, 2). Consider four decimal places at each stage for each variable. (07 Marks)
- b. Using the Newton-Raphson method, find the real root of the equation xsinx + cosx = 0 near to $x = \pi$, carryout four iterations (x in radians). (06 Marks)
- c. Find the largest eigen value and the corresponding eigen vector of the matrix

 $A = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{pmatrix}$ by power method. Take $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ as the initial vector. Perform 5 iterations.

(07 Marks)

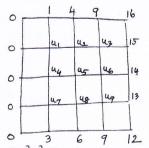
6 a. Find f(0.1) by using Newton's forward interpolation formula and f(4.99) by using Newton's backward interpolation formula from the data: (07 Marks)

X	0	1	2	3	4	5
f(x)	-8	0	20	58	120	212
• 1	(V)	1	•) T		

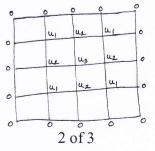
b. Find the interpolating polynomial f(x) by using Newton's divided difference interpolation formula from the data: (06 Marks)

X	0	1	2	3	4	5
f(x)	3	2	7	24	59	118

- c. Evaluate $\int_{0}^{0} e^{x} dx$ using Weddle's rule. Taking six equal sub intervals, compare the result with exact value. (07 Marks)
- 7 a. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the following square mesh. Carry out two iterations. (07 Marks)



b. Solve the Poisson's equation $\nabla^2 u = 8x^2y^2$ for the square mesh given below with u = 0 on the boundary and mesh length, h = 1. (06 Marks)



10MAT31

- c. Evaluate the pivotal values of $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$ taking h = 1 upto t = 1.25. The boundary conditions are u(0, t) = 0, u(5, t) = 0, $\frac{\partial u}{\partial t}(x, 0) = 0$, $u(x, 0) = x^2(5 x)$. (07 Marks)
- 8 a. Find the Z-transforms of i) $\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n$ ii) $3^n \cos \frac{\pi n}{4}$.

b. State and prove initial value theorem in Z-transforms.c. Solve the difference equation

 $u_{n+2} - 2u_{n+1} + u_n = 2^n; u_0 = 2, u_1 = 1.$

(07 Marks)

(06 Marks)

(07 Marks)

C Proporti Pission of