

10CS35

Third Semester B.E. Degree Examination, Dec.2014/Jan.2015 **Data Structures with C**

Time: 3 hrs.

2

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

		$\mathbf{O}_{\mathbf{A}}$ PART-A	al care
1	a.	What are pointer variables? How to declare a pointer variable?	(05 Marks)
	b.	What are the various memory allocation techniques? Explain how dynamic	allocation is
		done using malloc()?	(10 Marks)
	с.	What is recursion? What are the various types of recursion?	(05 Marks)
2	a.	Define structure and union with suitable example.	(08 Marks)
	b.	Write a C program with an appropriate structure definition and variable decla	ration to store
		information about an employee, using nested structures. Consider the following	g fields like:
		ENAME, EMPID, DOJ (Date, Month, Year) and Salary (Basic, DA, HRA).	(12 Marks)
2			
3	а.	Define stack. Give the C implementation of push and pop functions. Inclu	ide check for
	h	Write an algorithm to account in Court of the second stack.	(08 Marks)
	0.	following expression from in fix to post fix expression and apply the same	to convert the
		i) $(a * b) + a/d$ ($(a + b) + a/d$) ($(a + b) + a/d$) ($(a + b) + a/d$)	
		1) $(((a * b) + c/d + ((a * c)) - (a * c)))$.	(12 Marks)
4	a.	Define linked list Write a Corrogram to implement the insert and delete opera	tion on queue
		using linked list.	(10 Marks)
	b.	Explain the different types of linked list with diagram	(10 Marks)
			(10 11 11 11 5)
		PART – B	
5	a.	Define the following:	
		i) Binary tree	
		ii) Complete binary tree	
		iii) Almost complete binary tree	
		iv) Binary search tree	
	1	v) Depth of a tree.	(10 Marks)
	b.	In brief describe any five application of trees.	(05 Marks)
	C.	What is threaded binary tree? Explain right and left in threaded binary tree.	(05 Marks)
6	0	Write C function for the following tree to serve 1.	· (
U	a.	i) inorder ii) proorder iii) postorder	
	h	Explain min and max been with example	(10 Marks)
	0.	Explain min and max heap with example.	(10 Marks)
7	a.	Implement Fibonacci heap	(10 Marks)
	b.	What is binomial heap? Explain the steps involved in the deletion of min el	ement from a
		binomial heap.	(10 Marks)
		A	() · · · · · · · · · · · · · · · · · ·
8	a.	Explain AVL tree.	(10 Marks)

* * * * *

Explain the red-black tree. Also, state its properties. b.

(10 Marks) (10 Marks)