\square

Fourth Semester B.E. Degree Examination, Dec.2014/Jan. 2015 Graph Theory and Combinatorics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Define graph isomorphism and isomorphic graphs. Determine whether the following graphs are isomorphic or not:
(05 Marks)

Fig.Q.1(a)

b. Define complement of a simple graph. Let G be a simple graph of order n . If the size of G is 56 and the size of $\overline{\mathrm{G}}$ is 80 . What is n ?
c. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected undirected graph. What is the largest possible value for $|\mathrm{V}|$ if $|E|=19$ and $\operatorname{deg}(v) \geq 4$ for all $v \in V$?
(04 Marks)
d. Write a note on "Konigsberg bridge problem and its solution".
(06 Marks)
2 a. Define planar graph. Prove that the Peterson graph is nonplanar.
(05 Marks)
b. Define Hamilton cycle. How many edge disjoint Hamilton cycles exist in the complete graph with seven vertices? Also draw the graph to show these Hamilton cycles. (05 Marks)
c. Define dual of a planar graph. Construct the dual of the planar graph given in Fig.Q.2(c).
(04 Marks)
Fig.Q.2(c)

d. Define chromatic number and chromatic polynomial. Determine the chromatic polynomial for the graph show in Fig.Q.2(d).
(06 Marks)
Fig.Q.2(d)

3 a. A class room contains 10 micro computer that are to be connected to a wall socket that has 2 outlets. Connections are made by using extension cords that have 2 outlets each. Find the least number of cords needed to get these computer set up for use.
(04 Marks)
b. Apply merge sort to the list $-1,0,2,-2,3,6,-3,5,1,4$.
(04 Marks)
c. Find all the spanning trees of the graph shown in Fig.Q.3(c). Also find all the non isomorphic spanning trees.
(06 Marks)

Fig.Q.3(c)

d. Obtain an optimal prefix code for the message MISSION SUCCESSFUL. Indicate the code for the message.
(06 Marks)

4 a. State Krushkal's algorithm. Using Krushkal's algorithm find a minimal spanning tree for the weighted graph shown in Fig.Q.4(a).
(08 Marks)

Fig.Q.4(a)

b. Apply Dijkstra's algorithm the diagram shown in Fig.Q.4(b) and determine the shortest distance from vertex a to each of the other vertices in the directed graph.
(06 Marks)

Fig.Q.4(b)

c. Define the following with one example for each: i) Cut set; ii) Edge connectivity; iii) Vertex connectivity.
(06 Marks)

PART - B

5 a. A bit is either 0 or 1. A byte is a sequence of 8 bits. Find: i) The number of bytes; ii) The number of bytes that begin with 11 and end 11 ; iii) the number of bytes that begin with 11 and do not end with 11 and iv) the number of bytes that begin 11 or end with 11.
(06 Marks)
b. How many arrangements of the letters in MISSISSIPPI have no consecutive S's? (05 Marks)
c. Find the coefficient of x° in the expansion of $3\left(x^{2}-\frac{2}{x}\right)^{15}$.
(05 Marks)
d. In how many ways can we distribute 7 apples and 6 oranges among 4 children so that each child gets at least 1 apple?
(04 Marks)
6 a. How many integers between 1 and 300 (inclusive) are
i) Divisible by at least one of $5,6,8$?
ii) Divisible by none of $5,6,8$?
(06 Marks)
b. Define derangement. Find the number of derangements of 1, 2, 3, 4. List all the derangements.
(06 Marks)
c. Five teachers $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$ are to be made class teachers for five classes, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ one teacher for each class. T_{1} and T_{2} do not wish to become the class teachers for C_{1} or C_{2}, T_{3} and T_{4} for C_{4} or C_{5}, and T_{5} for C_{3} or C_{4} or C_{5}. In how many ways can the teachers be assigned the work?
(08 Marks)
7 a. Find the generating function for the sequence $8,26,54,92 \ldots$.
(06 Marks)
b. Using generating function, find the number of i) non negative and ii) positive integer solutions of the equation $x_{1}+x_{2}+x_{3}+x_{4}=25$.
(08 Marks)
c. Define exponential generating functions using exponential generating function find the number of ways in which 5 of the letters in the word CALCULUS be arranged.
(06 Marks)
8 a. The number of bacteria in a culture is 1000 (approximately) and this number increases 250% every two hours. Use a recurrence relation to determine the number of bacteria present after one day.
(05 Marks)
b. Solve the recurrence relation $a_{n+2}-4 a_{n+1}+3 a_{n}=-200, n \geq 0$ and $a_{0}=3000, a_{1}=3300$.
(07 Marks)
c. Find the generating function for the recurrence relation $a_{n+1}-a_{n}=n^{2}, n \geq 0$ and $a_{0}=1$.
(08 Marks)

