Engineering Maths 2 - January 2014
TOTAL MARKS: 100
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any four from the remaining questions.
(3) Assume data wherever required.
(4) Figures to the right indicate full marks.

1 (a)Choose the correct answer for the following:
(i) Suppose the equation to be solved is of the form, $y=f(x, \varphi)$ then differentiating x we get equation of the form,

> (a) $\phi\left(x, p, \frac{d p}{d y}\right)=0$
> (b) $\phi\left(y, p, \frac{d p}{d x}\right)=0$
> (c) $\phi(x, y p)=0$
> (d) $\phi(x, y, 0)=0$
(ii) The general solution of the equation $\mathrm{p}^{2}-3 \mathrm{p}+2=0$ is,
(a) $(y+x-c) y+2 x-c)$
(b) $(y-x-c)(y-2 x-c)=0$
(c) $(-y-x-c)(y-2 x-c)=0$
$(y-x-c)(y+x-c)=0$
(iii) Clairaut's equation is of the form,
(a) $x=p y+f(p)$
(b) $y=p^{2}+f(p)$
(c) $y=p x+f(p)$
(d) None of these
(iv) Singular solution of $y=p x+2 p^{2}$ is,
(a) $y^{2}+8 y=0$
(b) $x^{2}-8 y=0$
(c) $x^{2}+8 y-c=0$
(d) $x^{2}+8 y=0$

1 (b)Solve $\mathrm{p}^{2}+2 \mathrm{p} \cosh \mathrm{x}+1=0$.

1 (c)Find singular solution of $p=\sin (y-x p)$.

1 (d)Solve the equation $y^{2}(y-x p)=x^{4} p^{2}$ using substitution

$$
X=\frac{1}{x} a n d Y=\frac{1}{y}
$$

2 (a)Choose the correct answer for the following:
(i) A second order linear differential equation has,
(a) two arbitary solution
(b) One arbitary solution
(c) no arbitary solution
(d) None of these
(ii) If $2,4 \mathrm{i}$ and -4 i are the roots of A.E of a homogeneous linear differential equation then its solution is,

$$
\text { (a) } e^{x}+e^{x}(\cos 4 x+\sin 4 x)
$$

(b) $C_{1} e^{2 x}+C_{2} \cos 4 x+C_{3} \sin 4 x$
(c) $C_{1} e^{2 x}+C_{2} e^{x} \cos 4 x+C_{3} e^{x} \sin 4 x$
(d) $C_{1} e^{2 x} \cos 4 x+C_{2} e^{2 x} \sin 4 x$
(iii) P.I. of $(D+1)^{2} y=e^{-x+3}$

$$
\begin{gathered}
\text { (a) } \frac{x^{2}}{2} \\
\text { (b) } x^{3} e^{x} \\
\text { (c) } \frac{x^{3}}{3} e^{-x=3} \\
\text { (d) } \frac{x^{2}}{2} e^{-x+3}
\end{gathered}
$$

(iv) Particular integral of $f(D) y=e^{a x} V(x)$ is,

$$
\text { (a) } \frac{e^{a x} V(x)}{f(D)}
$$

(b) $e^{a x}=\frac{1}{f(D)}[V(x)]$
(c) $e^{a x} \frac{1}{f(D+a)}[V(x)]$
(d) $\frac{1}{f(D+a)}\left[e^{a x} V(x)\right]$

2 (b)

$$
\text { Solve } \frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=0
$$

2 (c)Solve $y^{\prime \prime}-3 y^{\prime}+2 y=2 \sin x \cos x$

2 (d)Solve the system of equation,

$$
\frac{d x}{d t}-2 y=\cos 2 t, \frac{d y}{d t}+2 x=\sin 2 t
$$

3 (a)Choose the correct answer for the following:
(i) In $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ if $e^{t}=x$ then we get $x^{2} y^{\prime \prime}$ as,
(a) (D-1)y
(b) $(D+1) y$
(c) $\mathrm{D}(\mathrm{D}+1) \mathrm{y}$
(d) None of these
(ii) In second order homogeneous differential equation $P_{0}(x) y "+P_{1}(x) y^{\prime}+P_{2}(x) y=0$
$\mathrm{x}=\mathrm{a}$ is a singular point if,
(a) $\mathrm{P}_{0}($ a) >0
(b) $\mathrm{P}_{0}(\mathrm{a}) ? 0$
(c) $P_{0}(a)=0$
(d) $\mathrm{P}_{0}($ a $)<0$
(iii) The general solution of

$$
\begin{gathered}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0 i s \\
\text { (a) } y=C_{1} x-C_{2} \frac{1}{x} \\
\text { (b) } C_{1} x+C_{2} \frac{1}{x} \\
\text { (c) } C_{1} x+C_{2} x \\
\text { (d) } C_{1} x-C_{2} x
\end{gathered}
$$

(iv) Frobenius series solution of second order linear differential equation is of the form,
(a) $x^{m} \sum_{r=0}^{\infty} a_{r} x^{r}$
(b) $\sum_{r=0}^{\infty} a_{r} x^{r}$
(c) $\sum_{r=a}^{\infty} a_{r} x^{m-r}$

None of these

3 (b)Solve $y^{\prime \prime}+a^{2} y=\sec a x$ by the method of variation of parameters.
3 (c)

$$
\text { Solve } x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}
$$

3 (d)Obtain the series solution of

$$
\frac{d y}{d x}-2 x y=0
$$

4 (a)Choose the correct answer for the following:
(i) PDE of $a z+b=a^{2} x+y$ is,

> (a) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}=1$
> (b) $\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}=0$
> (c) $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
> (d) $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1$
(ii) The solution of $\operatorname{PDE} Z_{x x}=2 y^{2}$ is,
(a) $z=x^{2}+x f(y)+g(y)$
(b) $z=x^{2} y^{2}+x f(y)+g(y)$
(c) $z=x^{2} y^{2}+f(x)+g(x)$
(d) $z=y^{2}+x f(y)+g(y)$
iii) The subsidiary equations of $\left(y^{2}+z^{2}\right) p+x(y q-z)=0$ are,

$$
\begin{gathered}
\text { (a) } \frac{d x}{p}=\frac{d y}{q}=\frac{d z}{R} \\
\text { (b) } \frac{d x}{y^{2}+z^{2}}=\frac{d y}{x}=\frac{d z}{x z} \\
\text { (c) } \frac{d x}{y^{2}+z^{2}}=\frac{d y}{x y}=\frac{d z}{x z} \\
\text { (d)None of these }
\end{gathered}
$$

(iv) In the method of seperation of variable to solve $\mathrm{xz}_{\mathrm{n}}+\mathrm{z}_{\mathrm{t}}=0$ the assumed solution is of the form,
(a) $\mathrm{X}(\mathrm{x}) \mathrm{Y}(\mathrm{x})$
(b) $X(y) Y(y)$
(c) $X(t) Y(t)$
(d) $X(x) T(t)$

4 (b)

$$
\text { Solve } \frac{\partial^{3} z}{\partial x^{2} \partial y}=\cos (2 x+3 y)
$$

4 (c)Solve $x p-y q=y^{2}-x^{2}$

4 (d)Solve $3 u_{x}+2 u_{y}=0$ by the seperation of variable method given that $u=4 e^{-x}$ when $\mathrm{y}=0$

5 (a)Choose the correct answer for the following:

$$
\int_{0}^{1} \int_{0}^{x^{2}} e^{y / x} d y d x=
$$

(a) 1
(b) $-1 / 2$
(c) $1 / 2$
(d) None of these
(ii) The integral

$$
\iint_{R} f(x, y) d x d y
$$

by changing to polar form becomes,
(a) $\iint_{R} \phi(r, \theta) d r d \theta$
(b) $\iint_{R} f(r, \theta) d r d \theta$
(c) $\iint_{R} f(r, \theta) r d r d \theta$
(d) $\iint_{R} \phi(r, \theta) r d r d \theta$
(iii) For a real positive number \mathbf{n}, the Gamma function ?(n)= \qquad

$$
\begin{aligned}
& \text { (a) } \int_{0}^{\infty} x^{n-1} e^{-x} d x \\
& \text { (b) } \int_{0}^{1} x^{n-1} e^{-x} d x \\
& \text { (c) } \int_{0}^{x} x^{n} e^{-x} d x \\
& \text { (d) } \int_{0}^{1} x^{n} e^{-x} d x
\end{aligned}
$$

(iv) The Beta and Gamma functions relation for $B(, n)=$

$$
\begin{aligned}
& \text { (a) } \frac{\Gamma(m) \Gamma(n)}{\Gamma(m-n)} \\
& \text { (b) } \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} \\
& \text { (c) } \Gamma(m) \Gamma(n) \\
& \text { (d) } \Gamma(m n)
\end{aligned}
$$

5 (b)By changing the order of integration evaluate,

$$
\int_{0}^{a} \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d y d x, a>0
$$

$$
\text { Evaluate } \int_{0}^{a} \int_{0}^{x} \int_{0}^{x-y} e^{x+y+z} d z d y d x
$$

5 (d)Express the integral

$$
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{n}}}
$$

in terms of the Gamma function, Hence evaluate

$$
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2 / 3}}}
$$

6 (a)Choose the correct answer for the following:
(i) The scalar surface integral of

$$
\vec{f}
$$

over s, where s is a surface in a three-dimensional region R is given by,

$$
\int \vec{f} \cdot n d s=
$$

by using Gauss divergence theorem
(a) $\iiint_{v} \nabla \cdot \vec{f} d V$
(b) $\iint_{s} \nabla \cdot \vec{t} d x d y$
(c) $\iiint_{v} \nabla \cdot \vec{F} d V$
(d) None of these
(ii) If all the surface are closed in a region containing volume V then the following theorem is applicable.
(a) Stroke's theorem
(b) Green's theorem
(c) Gauss divergence theorem
(d) None of these
(iii) The value of

$$
\int\left\{\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d x\right\}
$$

by using Green's theorem is,
(a) Zeron (b) One (c) Two (d) Three
(iv)

$$
\iint_{s} f \cdot n d s=
$$

\qquad
where $f=x i+y j+2 k$ and S is the surface of the sphere $x^{2} y^{2}+z^{2}=a^{2}$
(a) $4 \pi \mathrm{a}$ (b) $4 \pi \mathrm{a}^{2}$ (c) $4 \pi \mathrm{a}^{3}$ (d) 4π

6 (b)Find the work done by a force $f=\left(2 y-x^{2}\right) i+6 y z j-8 x z^{2} k$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the straight-line joining these points.

6 (c)If C is a simple closed curve in the xy-plane, prove by using Green's theorem that the integral

$$
\int_{C} \frac{1}{2}(x d y-y d x)
$$

represent the area A enclosed by. Hence evaluate

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

6 (d)Verify Stoke's theorem for

$$
\vec{f}=(2 x-y) i-y z^{2} j-y^{2} z k
$$

for the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$
(i) $\mathrm{L}\left[\mathrm{t}^{\mathrm{n}}\right]=$ \qquad
(a) $\frac{n}{s^{n+1}}$
(b) $\frac{n}{s^{n-1}}$
(c) $\frac{n!}{s^{n-1}}$
(d) $\frac{n!}{s^{n+1}}$
(ii) $\mathrm{L}\left[\mathrm{e}^{-3 \mathrm{t}}\right]=$ \qquad
(a) $\frac{3}{s-3}$
(b) $\frac{3}{s+3}$
(c) $\frac{1}{s+3}$
(d) $\frac{1}{s-3}$
iii) $\mathrm{L}\{\mathrm{f}(\mathrm{t}-\mathrm{a}) \mathrm{H}(\mathrm{t}-\mathrm{a})\}$ is equal to,

$$
\begin{aligned}
& \text { (a) } \frac{3!}{(s+2)^{4}} \\
& \text { (b) } \frac{3!}{(s-2)^{4}} \\
& \text { (c) } \frac{3}{(s-2)^{4}} \\
& \text { (d) } \frac{3}{(s-2)}
\end{aligned}
$$

(iv) $\mathrm{L}\{\delta(\mathrm{t}-1)\}=$
(a) e^{-s} (b) e^{5} (c) $e^{a S}$ (d) $e^{-a S}$

7 (b)Evaluate $L\left\{\sin ^{3} 2 t\right\}$

$$
f(t)= \begin{cases}2 & 3>t>0 \\ t & t>3\end{cases}
$$

7 (d)Express

$$
f(t)= \begin{cases}t^{2} & 2>t>0 \\ 4 t & 4 \geq t>2 \\ 8 & t>4\end{cases}
$$

in terms of unit step function and hence find their Laplace transform.

8 (a)Choose the correct answer for the following:
(i) $\mathrm{L}^{-1}\{\cos \mathrm{at}\}=$ \qquad
(a) $\frac{s}{s^{2}+a^{2}}$
(b) $\frac{s}{s^{2}-a^{2}}$
(c) $\frac{1}{s^{2}+a^{2}}$
(d) $\frac{1}{s^{2}-a^{2}}$
(ii) $\mathrm{L}^{-1}\{\overline{\mathrm{~F}}(\mathrm{~s}-\mathrm{a})\}=$
(a) $e^{t f}(t)$
(b) $e^{a t} f(t)$
(c) $e^{-a t} f(t)$
(d) None of these

$$
\begin{array}{r}
L^{-1}\left\{\cot ^{-1}\left(\frac{2}{s^{2}}\right)\right\}= \\
(a) \frac{\sin t}{t} \\
\text { (b) } \frac{\sinh a t}{t} \\
\text { (c) } \frac{\sin a t}{t} \\
\text { (d) } \frac{\sinh t}{t}
\end{array}
$$

(iv) For the function $\mathrm{f}(\mathrm{t})=1$, convolution theorem condition,
(a) Not satisfied
(b) Satisfied with some condition
(c) Satisfied
(d) None of these

8 (b)Find the inverse Laplace transform of

$$
\frac{2 s^{2}-6 s+5}{(s-1)(s-2)(s-3)}
$$

8 (c)Find

$$
L^{-1}\left(\frac{s}{(s-1)\left(s^{2}+4\right)}\right)
$$

using convolution theorem

8 (d)Solve differential equation $y^{\prime \prime}(t)+y=F(t)$ where

$$
F(t)= \begin{cases}0 & 1>t>0 \\ 2 & t>1\end{cases}
$$

Given that $\mathrm{y}(0)=0=\mathrm{y}^{\prime}(0)$

