Engineering Maths 2 - January 2014

TOTAL MARKS: 100 TOTAL TIME: 3 HOURS

- (1) Question 1 is compulsory.
- (2) Attempt any **four** from the remaining questions.
- (3) Assume data wherever required.
- (4) Figures to the right indicate full marks.

1 (a)Choose the correct answer for the following:

(4 marks)

(i) Suppose the equation to be solved is of the form, $y=f(x, \phi)$ then differentiating x we get equation of the form,

$$egin{aligned} &(a) \ \phi\left(x,p,rac{dp}{dy}
ight) = 0 \ &(b) \ \phi\left(y,p,rac{dp}{dx}
ight) = 0 \ &(c) \ \phi(x,yp) = 0 \ &(d) \ \phi(x,y,0) = 0 \end{aligned}$$

(ii) The general solution of the equation $p^2-3p+2=0$ is, (a) (y+x-c)y+2x-c) (b) (y-x-c)(y-2x-c)=0(c) (-y-x-c)(y-2x-c)=0(iii) Clairaut's equation is of the form, (a) x=py+f(p)(b) $y=p^2+f(p)$ (c) y=px+f(p)(d) None of these (iv) Singular solution of $y=px+2p^2$ is, (a) $y^2+8y=0$ (b) $x^2-8y=0$ (c) $x^2+8y-c=0$ (d) $x^2+8y=0$

1 (b)Solve $p^2+2p \cosh x+1=0.$ (4 marks)1 (c)Find singular solution of p=sin(y-xp).(6 marks)1 (d)Solve the equation $y^2(y-xp)=x^4p^2$ using substitution(6 marks)

$$X=rac{1}{x}andY=rac{1}{y}$$

2 (a)Choose the correct answer for the following:

(4 marks)

- (i) A second order linear differential equation has,
- (a) two arbitary solution
- (b) One arbitary solution
- (c) no arbitary solution
- (d) None of these

(ii) If 2, 4i and -4i are the roots of A.E of a homogeneous linear differential equation then its solution is,

$$egin{array}{l} (a) \ e^x + e^x (\cos 4x + \sin 4x) \ (b) \ C_1 e^{2x} + C_2 \cos 4x + C_3 \sin 4x \ (c) \ C_1 e^{2x} + C_2 e^x \cos 4x + C_3 e^x \sin 4x \ (d) \ C_1 e^{2x} \cos 4x + C_2 e^{2x} \sin 4x \end{array}$$

(iii) P.I. of $(D+1)^2$ y= e^{-x+3}

$$(a) \ rac{x^2}{2} \ (b) \ x^3 e^x \ (c) \ rac{x^3}{3} e^{-x=3} \ (d) \ rac{x^2}{2} e^{-x+3}$$

(iv) Particular integral of $f(D)y=e^{ax} V(x)$ is,

$$(a) \ \frac{e^{ax}V(x)}{f(D)}$$
$$(b) \ e^{ax} = \frac{1}{f(D)}[V(x)]$$
$$(c) \ e^{ax}\frac{1}{f(D+a)}[V(x)]$$
$$(d) \ \frac{1}{f(D+a)}[e^{ax}V(x)]$$

(4 marks)

$$Solve \; rac{d^3y}{dx^3} - 3rac{d^2y}{dx^2} + 3rac{dy}{dx} - y = 0$$

2 (c)Solve $y''-3y'+2y=2 \sin x \cos x$

2 (d)Solve the system of equation,

$$rac{dx}{dt}-2y=\cos 2t,\;rac{dy}{dt}+2x=\sin 2t$$

3 (a)Choose the correct answer for the following:

(i) In x²y"+ xy'-y=0 if e^t=x then we get x²y" as,
(a) (D-1)y

- (b) (D+1)y
- (c) D(D+1)y
- (d) None of these

(ii) In second order homogeneous differential equation $P_0(x)y''+P_1(x)y'+P_2(x)y=0$

x=a is a singular point if,

- (a) $P_0(a) > 0$
- (b) $P_0(a)$?0
- (c) $P_0(a)=0$
- (d) $P_0(a) < 0$
- (iii) The general solution of

$$egin{aligned} x^2rac{d^2y}{dx^2} + xrac{dy}{dx} - y &= 0 \ is, \ (a) \ y &= C_1 x - C_2 rac{1}{x} \ (b) \ C_1 x + C_2 rac{1}{x} \ (c) \ C_1 x + C_2 x \ (d) \ C_1 x - C_2 x \end{aligned}$$

(iv) Frobenius series solution of second order linear differential equation is of the form,

2 (b)

(4 marks)

(6 marks)

3 (b)Solve $y''+a^2y=sec$ ax by the method of variation of parameters. (4 marks)

3 (c)

$$Solve \; x^2 rac{d^2 y}{dx^2} + 4x rac{dy}{dx} + 2y = e^x$$

3 (d)Obtain the series solution of

$$rac{dy}{dx} - 2xy = 0$$

4 (a)Choose the correct answer for the following:

(i) PDE of $az+b=a^2x+y$ is,

$$(a) \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 1$$
$$(b) \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} = 0$$
$$(c) \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
$$(d) \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$$

(ii) The solution of PDE
$$Z_{xx}=2 y^2$$
 is,
(a) $z=x^2+xf(y)+g(y)$
(b) $z=x^2y^2+xf(y)+g(y)$

(6 marks)

(6 marks)

(c) $z=x^2y^2+f(x)+g(x)$ (d) $z=y^2+xf(y)+g(y)$

iii) The subsidiary equations of $(y^2+z^2)p+x(yq-z)=0$ are,

$$(a) \ rac{dx}{p} = rac{dy}{q} = rac{dz}{R}$$
 $(b) \ rac{dx}{y^2 + z^2} = rac{dy}{x} = rac{dz}{xz}$
 $(c) \ rac{dx}{y^2 + z^2} = rac{dy}{xy} = rac{dz}{xz}$
 $(d) \ None \ of \ these$

(iv) In the method of separation of variable to solve $xz_n+z_t=0$ the assumed solution is of the form, (a) X(x)Y(x)

(b) X(y)Y(y) (c) X(t)Y(t) (d) X(x)T(t)

4 (b)

$$Solve \; rac{\partial^3 z}{\partial x^2 \partial y} = cos(2x+3y)$$

$$4 (c)Solve xp-yq=y^2-x^2$$
(6 marks)

4 (d)Solve $3u_x+2u_y=0$ by the seperation of variable method given that $u=4e^{-x}$ when (6 marks) y=0

5 (a)Choose the correct answer for the following:

$$\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x} dy dx =$$

(a) 1 (b) $-1/2$ (c) $1/2$ (d) None of these

(ii) The integral

 $\iint_R f(x,y) dx dy$

by changing to polar form becomes,

 $\partial x^2 \partial y$

(4 marks)

$$(a) \iint_{R} \phi(r,\theta) dr d\theta$$

$$(b) \iint_{R} f(r,\theta) dr d\theta$$

$$(c) \iint_{R} f(r,\theta) r dr d\theta$$

$$(d) \iint_{R} \phi(r,\theta) r dr d\theta$$

(iii) For a real positive number n, the Gamma function ?(n)=_____

$$(a) \int_{0}^{\infty} x^{n-1} e^{-x} dx$$
$$(b) \int_{0}^{1} x^{n-1} e^{-x} dx$$
$$(c) \int_{0}^{x} x^{n} e^{-x} dx$$
$$(d) \int_{0}^{1} x^{n} e^{-x} dx$$

(iv) The Beta and Gamma functions relation for B(,n)=_____

$$egin{array}{l} \displaystyle (a) \; \displaystyle rac{\Gamma(m)\Gamma(n)}{\Gamma(m-n)} \ \displaystyle (b) \; \displaystyle rac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \ \displaystyle (c) \; \Gamma(m)\Gamma(n) \ \displaystyle (d) \; \Gamma(mn) \end{array}$$

5 (b)By changing the order of integration evaluate,

$$\int_0^a\int_{x/a}^{\sqrt{x/a}}(x^2+y^2)dydx,\ a>0$$

$$Evaluate \ \int_0^a \int_0^x \int_0^{x-y} e^{x+y+z} dz dy dx$$

5 (d)Express the integral

 $\int_0^1 rac{dx}{\sqrt{1-x^n}}$

in terms of the Gamma function, Hence evaluate

$\int_0^1 \frac{dx}{\sqrt{1-x^{2/3}}}$

6 (a)Choose the correct answer for the following:

(i) The scalar surface integral of

over s, where s is a surface in a three-dimensional region R is given by,

$$\int \stackrel{
ightarrow}{f} \, n ds =$$

 $(a) \iiint_v
abla \cdot \stackrel{
ightarrow}{f} dV$

 $(b) \iint_{s} \nabla \cdot \vec{t} dx dy$

 $(c) \iiint_v \nabla \cdot \overrightarrow{F} dV$

(d) None of these

 $\stackrel{
ightarrow}{f}$

by using Gauss divergence theorem

(a) Stroke's theorem

(b) Green's theorem

- (c) Gauss divergence theorem
- (d) None of these
- (iii) The value of

(6 marks)

$$\intig\{(2xy-x^2)dx+(x^2+y^2)dxig\}$$

by using Green's theorem is, (a) Zeron (b) One (c) Two (d) Three (iv)

$$\iint_s f.\, nds =$$

where f=xi+yj+2k and S is the surface of the sphere $x^2y^2+z^2=a^2$ (a) $4\pi a$ (b) $4\pi a^2$ (c) $4\pi a^3$ (d) 4π

6 (b)Find the work done by a force $f=(2y-x^2)i+ 6yzj-8xz^2k$ from the point (0, 0, 0) (4 marks) to the point (1, 1, 1) along the straight-line joining these points.

6 (c)If C is a simple closed curve in the xy-plane, prove by using Green's theorem (6 marks) that the integral

$$\int_C rac{1}{2}(xdy-ydx)$$

represent the area A enclosed by . Hence evaluate

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$

6 (**d**)Verify Stoke's theorem for

$$\stackrel{
ightarrow}{f}=(2x-y)i-yz^2j-y^2zk$$

for the upper half of the sphere $x^2+y^2+z^2=1$

(i) L[tⁿ]=_____

$$egin{array}{l} (a) \; rac{n}{s^{n+1}} \ (b) \; rac{n}{s^{n-1}} \ (c) \; rac{n!}{s^{n-1}} \ (d) \; rac{n!}{s^{n+1}} \end{array}$$

(ii) $L[e^{-3t}] =$ ______

$$(a) \frac{3}{s-3}$$
$$(b) \frac{3}{s+3}$$
$$(c) \frac{1}{s+3}$$
$$(d) \frac{1}{s-3}$$

iii) $L{f(t-a)H(t-a)}$ is equal to,

$$\begin{array}{l} (a) \ \displaystyle \frac{3!}{(s+2)^4} \\ (b) \ \displaystyle \frac{3!}{(s-2)^4} \\ (c) \ \displaystyle \frac{3}{(s-2)^4} \\ (d) \ \displaystyle \frac{3}{(s-2)} \end{array}$$

(iv) L{ $\delta(t-1)$ }= ____ (a) e^{-s} (b) e⁵ (c) e^{aS} (d) e^{-aS}

7 (b)Evaluate $L{\sin^3 2t}$

7 (c)Find $L{f(t)}$ given that

(6 marks)

$$f(t)=egin{cases} 2 & 3>t>0\ t & t>3\ \end{pmatrix}$$

7 (d)Express

$$f(t) = egin{cases} t^2 & 2 > t > 0 \ 4t & 4 \ge t > 2 \ 8 & t > 4 \end{cases}$$

in terms of unit step function and hence find their Laplace transform.

8 (a)Choose the correct answer for the following:

(i) $L^{-1} \{\cos at\} =$ _____

$$(a) \ \frac{s}{s^2 + a^2} \\ (b) \ \frac{s}{s^2 - a^2} \\ (c) \ \frac{1}{s^2 + a^2} \\ (d) \ \frac{1}{s^2 - a^2} \\ \end{cases}$$

(ii)
$$L^{-1} \{\overline{F}(s-a)\} =$$

(a) $e^{t}f(t)$
(b) $e^{at}f(t)$
(c) $e^{-at}f(t)$

(d) None of these

$$L^{-1}\left\{\cot^{-1}\left(\frac{2}{s^2}\right)\right\} = \underline{\qquad}$$

$$(a) \frac{\sin t}{t}$$

$$(b) \frac{\sinh at}{t}$$

$$(c) \frac{\sin at}{t}$$

$$(d) \frac{\sinh t}{t}$$

(iv) For the function f(t)=1, convolution theorem condition,

(4 marks)

(a) Not satisfied

(b) Satisfied with some condition

(c) Satisfied

(d) None of these

8 (b)Find the inverse Laplace transform of

$$\frac{2s^2-6s+5}{(s-1)(s-2)(s-3)}$$

8 (c)Find

 $L^{-1}\left(rac{s}{(s-1)(s^2+4)}
ight)$

using convolution theorem

8 (d)Solve differential equation y''(t) + y = F(t) where

 $F(t)=egin{cases} 0 & 1>t>0\ 2 & t>1 \ \end{cases}$

Given that y(0)=0=y'(0)

(6 marks)

(4 marks)