USN

Third Semester B.E. Degree Examination, June/July 2013

Engineering Mathematics - III

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

a. Obtain the Fourier series expansion of $f(x) = \begin{cases} x, & \text{if } 0 \le x \le \pi \\ 2\pi - x, & \text{if } \pi \le x \le 2\pi \end{cases}$ and hence deduce

that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 (07 Marks)

b. Find the half range Fourier sine series of $f(x) = \begin{cases} x, & \text{if } 0 < x < \frac{\pi}{2} \\ \pi - x, & \text{if } \frac{\pi}{2} < x < \pi \end{cases}$. (06 Marks)

Obtain the constant term and coefficients of first cosine and sine terms in the expansion of y from the following table: (07 Marks)

X	0	60°	120°	180°	240°	300°	360°
У	7.9	7.2	3.6	0.5	0.9	6.8	7.9

 $\begin{cases} a^2 - x^2, & |x| \le a \\ 0, & |x| > a \end{cases}$ and hence deduce a. Find the Fourier transform of $f(x) = \begin{cases} f(x) = f(x) \end{cases}$

(07 Marks)

- Find the Fourier cosine and sine transform of $f(x) = xe^{-ax}$, where a > 0. (06 Marks)
- Find the inverse Fourier transform of e^{-s^2} . (07 Marks)
- Obtain the various possible solutions of one dimensional heat equation $u_t = c^2 u_{xx}$ by the 3 method of separation of variables. (07 Marks)
 - A tightly stretched string of length k with fixed ends is initially in equilibrium position. It is set to vibrate by giving each point a velocity $V_o \sin\left(\frac{\pi x}{\ell}\right)$. Find the displacement u(x, t).

(06 Marks)

- Solve $u_{xx} + u_{yy} = 0$ given u(x, 0) = 0, u(x, 1) = 0, u(1, y) = 0 and $u(0, y) = u_0$, where u_0 is a constant. (07 Marks)
- Using method of least square, fit a curve $y = ax^b$ for the following data. (07 Marks)

X	1	2	3	4	5
У	0.5	2	4.5	8	12.5

Solve the following LPP graphically:

Minimize Z = 20x + 16y

Subject to
$$3x + y \ge 6$$
, $x + y \ge 4$, $x + 3y \ge 6$ and $x, y \ge 0$. (06 Marks)

Use simplex method to

Maximize Z = x + (1.5)y

Subject to the constraints $x + 2y \le 160$, $3x + 2y \le 240$ and $x, y \ge 0$. (07 Marks)

PART - B

- 5 a. Using Newton-Raphson method find a real root of $x + log_{10}x = 3.375$ near 2.9, corrected to 3-decimal places. (07 Marks)
 - b. Solve the following system of equations by relaxation method: 12x + y + z = 31, 2x + 8y - z = 24, 3x + 4y + 10z = 58 (07 Marks)
 - Find the largest eigen value and corresponding eigen vector of following matrix A by power method

$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}.$$

Use $X^{(0)} = [1, 0, 0]^T$ as the initial eigen vector.

(06 Marks)

a. In the given table below, the values of y are consecutive terms of series of which 23.6 is the 6th term, find the first and tenth terms of the series. (07 Marks)

<u> </u>		: 4			7	0	0
X	3	4))	6	/	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

b. Construct an interpolating polynomial for the data given below using Newton's divided difference formula. (07 Marks)

X	2	4	5	6	8	10
f(x)	10	96	196	350	868	1746

- c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by Weddle's rule taking 7-ordinates and hence find $\log_e 2$. (06 Marks)
- 7 a. Solve the wave equation $u_{tt} = 4u_{xx}$ subject to u(0, t) = 0; u(4, t) = 0; $u_t(x, 0) = 0$; u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps. (07 Marks)
 - b. Solve numerically the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0 = u(1, t), t \ge 0$ and $u(x, 0) = \sin \pi x, 0 \le x \le 1$. Carryout computations for two levels taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$.
 - c. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in Fig.Q7(c). (06 Marks)

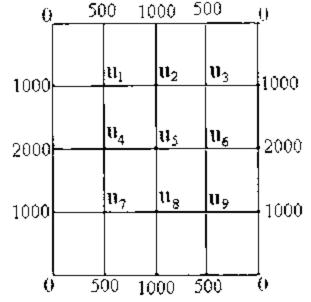


Fig.Q7(c)

8 a. Find the z-transform of: i) $\sin h n \theta$; ii) $\cos h n \theta$.

(07 Marks)

b. Obtain the inverse z-transform of $\frac{8z^2}{(2z-1)(4z-1)}$.

(07 Marks)

(06 Marks)

c. Solve the following difference equation using z-transforms:

$$y_{n+2} + 2y_{n+1} + y_n = n$$
 with $y_0 = y_1 = 0$