USN 4th CS/IS

Fourth Semester B.E. Degree Examination, June/July 2013 Engineering Mathematics – IV

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Use of Statistical tables permitted.

PART - A

1 a. Use modified Euler's method to solve $\frac{dy}{dx} = x + y$, y(0) = 1 at x = 0.1 for three iterations taking h = 0.1. (06 Marks)

b. Solve $\frac{dy}{dx} = x + y$, x = 0, y = 1 at x = 0.2 using Runge-Kutta method. Take h = 0.2.

(07 Marks)

c. Using Milne's predictor-corrector method find y(0.3) correct to three decimals given,

(07 Marks)

X	-0.1	0	0.1	0.2
<u>y_</u>	0.908783	1.0000	1.11145	1.25253

2 a. Approximate y and z at x = 0.2 using Picard's method for the solution of $\frac{dy}{dx} = z$,

$$\frac{dz}{dx} = x^3(y+z)$$
 with $y(0) = 1$, $z(0) = 1/2$. Perform two steps (y_1, y_2, z_1, z_2) . (10 Marks)

- b. Using Runge-Kutta method solve $y'' = x(y')^2 y^2$ at x = 0.2 with $x_0 = 0$, $y_0 = 1$, $z_0 = 0$ take h = 0.2. (10 Marks)
- 3 a. If f(z) = u + iv is analytic prove that Cauchy-Reimann equations $u_x = v_y$, $u_y = -v_x$ are true. (06 Marks)
 - b. If $w = z^3$ find dw/dz.

(07 Marks)

c. If the potential function is $\phi = \log \sqrt{x^2 + y^2}$. Find the stream function.

(07 Marks)

- 4 a. Find the bilinear transformation which maps the points z = 1, i, -1 onto the points w = j, o, -i. (06 Marks)
 - b. Discuss the conformal transformation $w = e^z$. Any horizontal strip of height 2π in z-plane will map what portion of w-plane. (07 Marks)
 - c. State and prove Cauchy's integral formula.

(07 Marks)

PART – B

5 a. Prove that $J_{1/2}^{(x)} = \sqrt{\frac{2}{\pi x}} \sin x$.

(06 Marks)

b. State and prove Rodrigues formula for Legendre's polynomials.

(07 Marks)

c. Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomial.

(07 Marks)

6 a. The probabilities of four persons A, B, C, D hitting targets are respectively 1/2, 1/3, 1/4, 1/5. What is the probability that target is hit by at least one person if all hit simultaneously?

(06 Marks)

- b. i) State addition law of probability for any two events A and B.
 - ii) Two different digits from 1 to 9 are selected. What is the probability that the sum of the two selected digits is odd if '2' one of the digits selected. (07 Marks)
- c. Three machine A, B, C produce 50%, 30%, 20% of the items. The percentage of defective items are 3, 4, 5 respectively. If the item selected is defective what is the probability that it is from machine A? Also find the total probability that an item is defective. (07 Marks)
- 7 a. The p.d.f of x is

X	0	1	2	3	4	5	6
p(x)	k	3k	5k	7k	9k	11k	13 <u>k</u>

Find k. Also find $p(x \ge 5)$, $p(3 \le x \le 6)$.

(06 Marks)

- b. A die is thrown 8 times. Find the probability that '3' falls,
 - i) Exactly 2 times
 - ii) At least once
 - iii) At the most 7 times.

(07 Marks)

- c. In a certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more; ii) less than 10minutes; iii) between 10 and 12 minutes.

 (07 Marks)
- 8 a. What is null hypothesis, alternative hypothesis significance level? (06 Marks)
 - b. The nine items of a sample have the following values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significantly from the assumed mean of 47.5. Apply student's t-distribution at 5% level of significance. ($t_{0.05}$ for 8df = 2.31). (07 Marks)
 - c. In experiments on a pea breading, the following frequencies of seeds were obtained:

Round-yellow	Wrinkled yellow	Round green	Wrinkled green	Total
315	101	108	. 32	556

Is the experiment is in the agreement of theory which predicts proportion of frequencies 9:3:3:1 $(x_{0.05}^2, 3df \equiv 7.815)$. (07 Marks)

* * * * *