

Fifth Semester B.E. Degree Examination, June/July 2014 Formal Languages and Automata Theory Time: 3 hrs .

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Write the DFAs for the following languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
(i) The set of all strings ending with $\mathrm{a} \& \mathrm{~b}$.
(ii) The set of all strings not containing the substring aab.
(iii) Set of all strings with exactly three consecutive a's.
(10 Marks)
b. Define NFA. Convert the following NFA to its equivalent DFA. [Refer Fig.Q1(b)] (10 Marks)

Fig.Q1(b)
2 a. Consider the following \in - NFA:

	\in	a	b	c
$\rightarrow p$	ϕ	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	ϕ
$* r$	$\{q\}$	$\{r\}$	ϕ	$\{p\}$

(i) Compute the \in-closure of each state
(ii) Convert the $\in-$ NFA to DFA.
(08 Marks)
b. Define Regular expression. Convert the following automation to a regular expression using state elimination technique. [Refer Fig.Q2(b)]
(08 Marks)

Fig.Q2(b)
c. Convert the regular expression $(0+1)^{*} \mid(0+1)$ to an NFA.
(04 Marks)
3 a. State and prove pumping lemma for regular languages.
(10 Marks)
b. Define distinguishable and indistinguishable states. Minimize the following DFA using table filling algorithm.
(10 Marks)

	0	1
A	B	F
B	G	C
* C	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

4 a. Define CFG. Write CFG for the following languages.
(i) $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
(ii) $\mathrm{L}=$ \{String l of a's and b's with equal number of a's and b's \}
(06 Marks)
b. What is an ambiguous grammar? Show that the following grammar is ambiguous.

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{E} * \mathrm{E}|\mathrm{E} / \mathrm{E}|(\mathrm{E}) \mid \mathrm{a}
$$

where E is the start symbol. Find the unambiguous grammar.
c. Discuss the applications of CFG.

PART - B

5 a. Define PDA. Construct PDA that accepts the language $L=\left\{w w^{R} \mid w \in(a+b)^{*}\right.$ and w^{R} is the reversal of $w\}$. Write IDs for the string aabbaa.
(10 Marks)
b. Convert the following CFG to PDA and give the procedure for the same.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aABB} \mid \mathrm{aAA} \\
& \mathrm{~A} \rightarrow \mathrm{aBB} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bBB} \mid \mathrm{A} \\
& \mathrm{C} \rightarrow \mathrm{a}
\end{aligned}
$$

(10 Marks)
6 a. Consider the following CFG:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BaB} \\
& \mathrm{~A} \rightarrow \mathrm{aA}|\mathrm{BaC}| \text { aaa } \\
& \mathrm{B} \rightarrow \mathrm{bBb}|\mathrm{a}| \mathrm{D} \\
& \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC} \\
& \mathrm{D} \rightarrow \epsilon
\end{aligned}
$$

(i) What are useless symbols?
(ii) Eliminate \in-productions unit productions and useless productions from the grammar.
b. What is CNF and GNF? Obtain the following grammar in CNF:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aBa} \mid \mathrm{abba} \\
& \mathrm{~A} \rightarrow \mathrm{ab} \mid \mathrm{AA} \\
& \mathrm{~B} \rightarrow \mathrm{aB} \mid \mathrm{a}
\end{aligned}
$$

a. Define a turing machine and explain with neat diagram, the working of a basic turing machine.
(06 Marks)
b. Design a turing machine to accept the set of all palindromes over $\{a \cdot b\}^{*}$. Also, indicate the moves made by turing machine for the string aba.
(14 Marks)
8 Write short notes on:
a. Multitape turing machine
b. Post's correspondence problem
c. Pumping lemma for CFL
d. Recursive languages.
(20 Marks)

