Engg Mathematics 4 - December 2012
TOTAL MARKS: 100
TOTAL TIME: 3 HOURS
(1) Question 1 is compulsory.
(2) Attempt any four from the remaining questions.
(3) Assume data wherever required.
(4) Figures to the right indicate full marks.

1 (a)Using the Taylor's series method, solve the initial value problem

$$
\frac{d y}{d x}=x^{2} y-1, y(0)=1
$$

at the point $x=0.1$
1 (b)Employ the fourth order Runge-Kutta method to solve

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} y(0)=1
$$

1 (c)
Given $\frac{d y}{d x}=x y+y^{2}, y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773, y(0.3)=1.5049$
formula twice.

2 (a)Exmploying the Picard's method, obtain the second order approximate solution of the following problem at $\mathrm{x}=0.2$.

$$
\frac{d y}{d x}=x+y z, \frac{d z}{d x}=y+z x, y(0)=1, z(0)=-1
$$

2 (b)Using the Runge-kutta method, find the solution at $\mathrm{x}=0.1$ of the differential

$$
\frac{d^{2} y}{d x^{3}}-x^{2} \frac{d y}{d x}-2 x y=1
$$

2 (c)Using the Milne's method, obtain an approximate solution at the point $x=0.4$ of the problem

$$
\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-6 y=0, y(0)=1, y^{\prime}(0)=0.1
$$

$\mathrm{y}(0.3)=1.29865, \mathrm{y}^{\prime}(0.3)=1.873$.

3 (a)If $f(z)=u+i v$ is an analytic function then prove that

$$
\left[\frac{\partial}{\partial x}|f(z)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(z)|\right]^{2}=\left|f^{\prime}(z)\right|^{2}
$$

3 (b)Find an analytic function whose imaginary part is $v=e^{x}\left\{\left(x^{2}-y^{2}\right) \cos y-2 x y \sin \right.$ y\}

3 (c)If $f(z)=u(r, ?)+i v(r, ?)$ is an analytic function, show that u and v satisfy the equation

$$
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=0
$$

4 (a)Find the bilinear transformation that maps the points $1, i,-1$ onto the point $\mathrm{i}, 0$,

4 (b)Discuss the transformation $\mathrm{W}=\mathrm{e}^{\mathrm{x}}$.

4 (c)Evaluate

$$
\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{3}}{(z-1)^{2}(z-2)} d z
$$

5 (a)Express the polynomial $2 x^{3}-x^{2}-3 x+2$ in terms of Legendre polynomials.

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0
$$

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} .
$$

6 (a)State the axioms of probability. For any two events A and B, Prove that $\mathrm{P}(\mathrm{A} ? \mathrm{~B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$? B$)$.

6 (b)A bag contains 10 white balls and 3 red ball while another bag contains 3 white balls and 5 red balls. Two balls are drawn at random from the first bag and put in the second bag and then a ball is drawn at random from the second bag. What is the probability that it is a white ball?

6 (c)In a bolt factory there are four machines A, B, C, D manufacturing respectively $20 \%, 15 \%, 25 \%, 40 \%$ of the total production. Out of these $5 \%, 4 \%, 3 \%$ and 2% respectively are defective. A bolt is drawn at random from the production and is found to be defective. Find the probability that it was manufactured by A or D.

7 (a)The probability distribution of finite random variable x is given by the
following table:

x_{i}	-2	-1	0	1	2	3
$\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$	0.1	k	0.2	$2 k$	0.3	k

Determine the value of k and find the mean, variance and standard deviation.

7 (b)The probability that a pen manufactured by a company will be defective is 0.1. If 12 such pens are selected, find the probability that (i) exactly 2 will be defective. (ii) at least 2 will be defective, (iii) none will be defective.

7 (c)In a normal distribution, 31% of the items are under 45 and 8% are over 64 .
Find the mean and standard deviation, given that $\mathrm{A}(0.5)=0.19$ and $\mathrm{A}(1.4)=0.42$, where $\mathrm{A}(\mathrm{z})$ is the area under the standard normal curve from O to $\mathrm{z}>0$.

8 (a)A biased coin is tossed 500 times and head turns up 120 times. Find the 95%

8 (b)A certain stimulus administered to each of 12 patients resulted in the following changes in blood pressure;
$5,2,8,-1,3,0,6,-2,1,5,0,4$ (in appropriate unit)
Can it be conclude that, on the whole, the stimulus will change the blood pressure.
Use $\mathrm{t}_{0.05}(11)=2.201$.

8 (c)A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table:

Test the hypothesis that the die is unbiased. (Given that $\mathrm{x}^{2}{ }_{0.05}(5)=11.07$ and $\mathrm{x}^{2}{ }_{0.01}(5)=15.09$)

