(Revised course)

(3 Hours)

Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Answer any three questions from question nos. 2 to 6.
- (3) Figures to the right indicate full marks.
- (4) Programming Calculators are not allowed.
- (a) Evaluate $\int_{0}^{60} x^2 7^{-4x^2} dx$

3

(b) Solve $(D^4+4)y = 0$

3

(c) Prove that $E \nabla = \Delta = \nabla E$

3

(d) Solve $(x + 2y^3) \frac{dy}{dx} = y$.

3

(e) Evaluate $\iint_{R} r^3 dr d\theta$ over the region between the circles $r = 2 \sin \theta$, $r = 4 \sin \theta$.

4

(f) Evaluate $\int_{0}^{1} \int_{y}^{\sqrt{y}} \frac{x}{(1-y)\sqrt{y-x^2}} dydx$

(a) Solve: $(x^3y^4 + x^2y^3 + xy^2 + y) dx + (x^4y^3 - x^3y^2 - x^2y + x) dy = 0$

(b) Change the order of integral and hence evaluate $\int_0^5 \int_{2-x}^{2+x} dxdy$

(c) Prove that $\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$

8

(a) Evaluate $\int_0^1 \int_{x^2}^1 \int_0^{1-x} x \, dx \, dy \, dz$.

6

(b) Find the area of one loop of the lemniscate $r^2=a^2 \cdot \cos 2\theta$

6

(c) Solve $(D^3+2D^2+D)y = x^2e^{3x}+\sin^2x+2x$

8

(a) Show that the length of arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x is 4. a $(\log 2 + \frac{15}{16})$

6

(b) Using the method of variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$.

6

Compute y(0.2) given $\frac{dy}{dx} + y + xy^2 = 0$, y(0) = 1 by taking h = 0.1 using Runge-Kutta method of fourth order correct to 4 decimals.

8

5. (a) Solve
$$\frac{dy}{dx} + x(x+y) = x^3(x+y)^3 - 1$$
.

(b) Solve $\frac{dy}{dx} - 2y = 3e^{x}$, y(0) = 0 using Taylor series method. Find approximate value of y for x = 1 and 1.1.

(c) Evaluate $\int_0^6 \frac{dx}{1+x}$ using

(i) Trapezoidal rule

8

(ii) Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule and

(iii) Simpson's $\left(\frac{3}{8}\right)^{th}$ rule.

Compare result with exact values.

(a) The current in a circuit containing an inductance L, registance R and voltage 6. E sin wt is given by

 $L \frac{di}{dt} + Ri = E \sin wt$

If i = 0 at t = 0, find i.

(b) Evaluate $\iint_{\mathbb{R}} e^{2x-3y} dxdy$ over the triangle bounded by x + y = 1, x = 1, y = 1

(i) Find the volume of solid bounded by the surfaces $y^2 = 4ax$, $x^2 = 4ay$ and the planes Z = 0, Z = 3.

Change to polar co-ordinates and evaluate

4

 $\int\limits_{0}^{a} \int\!\!\!\sqrt{a^{2}-x^{2}} \ \frac{dxdy}{\sqrt{a^{2}-x^{2}-v^{2}}}$