USN

Fourth Semester B.E. Degree Examination, June/July 2013 Applied Thermodynamics

Time: 3 hrs. Max. Marks: 100

Note:1. Answer FIVE full questions, selecting at least TWO questions from each part.

2. Use of thermodynamic data hand book is permitted.

PART - A

- 1 a. Explain the following:
 - i) Enthalpy of formationiv) Complete combustion
- Enthalpy of formation ii) Combustion efficiency
- iii) Enthalpy of combustion (10 Marks)
- b. The products of combustion of hydrocarbon fuel of unknown composition have the following composition on dry basis:

v) Incomplete combustion

 $CO_2 = 8.0\%$, CO = 0.9 %, $O_2 = 8.8 \%$, $N_2 = 82.3\%$

Calculate: i) Airfuel ratio

- ii) Composition of fuel on mass basis.
- iii) The percentage of theoretical air on mass basis.

(10 Marks)

- 2 a. Derive an expression of air standard efficiency of a dual cycle, stating the assumptions made. (10 Marks)
 - b. A diesel engine operating on an air standard diesel cycle has 20 mm bore and 30 mm stroke. The clearance volume is 4.2×10^{-4} m³. The fuel is injected for constant pressure for 5% of the stroke, calculate the air standard efficiency. If the cut-off is delayed from 5% to 8%, what will be the effect on efficiency? (10 Marks)
- 3 a. Explain the following: i) Motoring test method ii) Willian's line method. (08 Marks)
 - b. A two stroke diesel engine was motored when meter reading was 1.5 kW. Test on engine was carried for one hour and data observed were as follows: Brake torque = 120 N-m;

 $C_P(gas) = 1.05 \text{ kJ/kg-K},$

Speed = 600 rpm,

Room temperature = 27° C,

Fuel used = 2.5 kg,

A: F ratio = 32:1, Calorific value = 40.3 MJ/kg, Rise in temperature of cooling water = 10°C,

Cooling water = 818 kg, Rise Exhaust gas temperature = 347°C .

Determine brake power, indicated power, brake thermal efficiency. And draw the heat balance sheet on minute basis.

(12 Marks)

- 4 a. Sketch the flow diagram and corresponding T-S diagram of a reheat vapour cycle and derive an expression for the reheat cycle efficiency. What are the advantages gained by reheating the steam in between stages? (10 Marks)
 - b. A steam power station uses the following cycle: steam boiler outlet: 150 bar, 550°C Reheat at 0.1 bar, using the Mollier diagram and assuming the ideal process find,
 - i) Quality of steam at turbine exhaust.
 - ii) Cycle efficiency.

(10 Marks)

PART - B

5 a. Derive an expression for minimum work I/P by two stage compressor with intercooler.

(10 Marks)

- b. The following data refer to a single stage double acting air compressor in which air is drawn at 1 bar and compressor in which air is drawn at 1 bar and compressed to 16 bar, according to the law PV^{1,25} = C. Input to compressor is 50 kW. The speed of the compressor is 300 rpm. The piston speed is 180 m/min. The volumetric efficiency is 80%. Calculate the diameter and stroke of the cylinder.
- 6 a. With neat sketches, explain turbojet and ramjet propulsions.

(10 Marks)

- b. A gas turbine receives air at 100 kPa and 300 K and compresses it to 620 kPa. With compressor efficiency of 88%. The fuel has a heating value of 44180 kJ/kg and fuel air ratio is 0.017 kg of fuel per kg of air. The turbine efficiency is 90%. Calculate the compressor work, turbine work and thermal efficiency.

 (10 Marks)
- 7 a. Explain the effect of super heating and sub-cooling with the aid of T-S and P-H diagrams.

(06 Marks)

b. Explain steam jet refrigeration.

(04 Marks)

- c. A vapour compression refrigeration uses Freon-12, has its temperature 10°C and 30°C. The vapour enters the compressor dry and under cooled by 5°C in the condenser. For the capacity of 15 TO R, find
 - i) COP
 - ii) Mass of Freon
 - iii) Power required C_P (vapour) = 0.56 kJ/kg-K and C_P (liquid) = 1.003 kJ/kg-K (10 Marks)
- **8** a. Define the following:
 - i) Wet bulb temperature
 - ii) Dew point temperature
 - iii) Relative humidity
 - iv) Specific humidity
 - v) Degree of saturation.

(10 Marks)

- b. A sling thermometer reads 40°C DBT and 28°C WBT. Find the following:
 - i) Specific humidity

ii) Relative humidity

iii) Dew point temperature

iv) Vapour density

(10 Marks)

* * * * *